- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Lau, Ryan_M (2)
-
Anugu, Narsireddy (1)
-
Bally, John (1)
-
Barnes, Ashley_T (1)
-
Battersby, Cara_D (1)
-
Chhabra, Sorabh (1)
-
Codron, Isabelle (1)
-
Cotera, Angela_S (1)
-
Eldridge, Jan_J (1)
-
Ennis, Jacob (1)
-
Gardner, Tyler (1)
-
Gutierrez, Mayra (1)
-
Hankins, Matthew_J (1)
-
Hatchfield, H_Perry (1)
-
Herter, Terry_L (1)
-
Holdsworth, Amanda (1)
-
Ibrahim, Noura (1)
-
Kraus, Stefan (1)
-
Labdon, Aaron (1)
-
Lanthermann, Cyprien (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The central regions of the Milky Way constitute a unique laboratory for a wide swath of astrophysical studies; consequently, the inner ∼400 pc have been the target of numerous large surveys at all accessible wavelengths. In this paper, we present a catalog of sources at 25 and 37μm located within all of the regions observed with the SOFIA/FORCAST instrument in the inner ∼200 pc of the Galaxy. The majority of the observations were obtained as part of the SOFIA Cycle 7 Galactic Center Legacy program survey, which was designed to complement the Spitzer/MIPS 24μm catalog in regions saturated in the MIPS observations. Due to the wide variety of source types captured by our observations at 25 and 37μm, we do not limit the FORCAST source catalog to unresolved point sources, or treat all sources as if they are pointlike sources. The catalog includes all detectable sources in the regions, resulting in a catalog of 950 sources, including point sources, compact sources, and extended sources. We also provide the user with metrics to discriminate between the source types.more » « less
-
Richardson, Noel_D; Schaefer, Gail_H; Eldridge, Jan_J; Spejcher, Rebecca; Holdsworth, Amanda; Lau, Ryan_M; Monnier, John_D; Moffat, Anthony_F_J; Weigelt, Gerd; Williams, Peredur_M; et al (, The Astrophysical Journal)Abstract Classical Wolf–Rayet (W-R) stars are the descendants of massive OB stars that have lost their hydrogen envelopes and are burning helium in their cores prior to exploding as Type Ib/c supernovae. The mechanisms for losing their hydrogen envelopes are either through binary interactions or through strong stellar winds potentially coupled with episodic mass loss. Among the bright classical W-R stars, the binary system WR 137 (HD 192641; WC7d + O9e) is the subject of this paper. This binary is known to have a 13 yr period and produces dust near periastron. Here we report on interferometry with the Center for High Angular Resolution Astronomy Array collected over a decade of time and providing the first visual orbit for the system. We combine these astrometric measurements with archival radial velocities to measure masses of the stars ofMWR= 9.5 ± 3.4M⊙andMO= 17.3 ± 1.9M⊙when we use the most recent Gaia distance. These results are then compared to predicted dust distribution using these orbital elements, which match the observed imaging from JWST as discussed recently by Lau et al. Furthermore, we compare the system to the Binary Population And Spectral Synthesis models, finding that the W-R star likely formed through stellar winds and not through binary interactions. However, the companion O star did likely accrete some material from the W-R star’s mass loss to provide the rotation seen today that drives its status as an Oe star.more » « less
An official website of the United States government
